Lecture 12 Heat Exchange in Reactors and Its Effect on Reaction Processes

Goal of the lecture: To study how heat transfer mechanisms influence chemical reactions and reactor performance, focusing on methods to control temperature and enhance energy efficiency in various reactor types.

Brief lecture notes: This lecture explores the fundamental principles of heat exchange within chemical reactors, examining how thermal conditions affect reaction rates, equilibrium, and selectivity. The discussion includes mechanisms of heat transfer—conduction, convection, and radiation—and how these processes are integrated into reactor design. Emphasis is placed on exothermic and endothermic reactions, the role of heat exchangers, and temperature control strategies in industrial systems. Both steady-state and dynamic behaviors are analyzed, along with practical approaches for maintaining thermal stability and optimizing conversion.

Main part

In chemical reactors, heat exchange plays a critical role in determining the rate and extent of chemical reactions. Most chemical reactions involve either the release or absorption of heat—classified respectively as *exothermic* or *endothermic* reactions. Efficient control of heat transfer is therefore essential to prevent thermal runaways in exothermic systems or to maintain sufficient temperature for endothermic reactions.

The three fundamental mechanisms of heat transfer are:

- 1. Conduction, the transfer of heat through solid materials;
- 2. Convection, involving heat transfer between a surface and a moving fluid;
- 3. Radiation, which involves energy exchange via electromagnetic waves.

In reactor engineering, these mechanisms often operate simultaneously. The total heat flux q can be described by Fourier's law for conduction and Newton's law of cooling for convection:

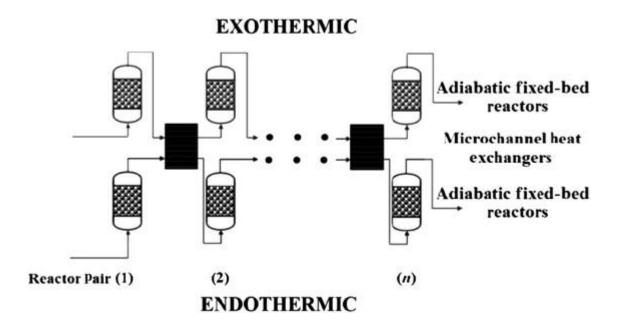
$$q = -k \frac{dT}{dx}$$
(Fourier's law)

$$q = hA(T_s - T_f)$$
(Newton's law of cooling)

where k is the thermal conductivity, h is the heat transfer coefficient, A is the surface area, T_s is the surface temperature, and T_f is the fluid temperature.

In exothermic reactions, such as oxidation or polymerization, the released heat must be removed efficiently to avoid excessive temperature rise, which can shift equilibrium and deactivate catalysts. Conversely, endothermic reactions like steam reforming or cracking require external heat input to maintain reaction progress. The design of heat exchangers—whether internal (coils, jackets) or external (recycle loops)—is crucial for stable operation.

The reactor's thermal behavior depends on its type:


- Batch reactors: Heat control achieved by external jackets or internal coils.
- Continuous stirred-tank reactors (CSTR): Temperature uniformity maintained by continuous mixing and external heat exchange.

• Plug flow reactors (PFR): Exhibit temperature gradients along the reactor length; thus, heat management requires distributed heat transfer surfaces.

Table 1 summarizes typical heat exchange characteristics of reactor types.

Reactor Type	Temperature Distribution		Heat Exchange Method	Thermal Control Efficiency
Batch Reactor	Uniform (mixing)	(with	Jacket or coil	Moderate
CSTR	Uniform		External heat exchanger	High
PFR	Gradient a length	_		Variable, depends on design

Figure 1 illustrates a schematic of heat exchange in a tubular reactor with external cooling, showing the relationship between reactor length and temperature profile.

Proper thermal management not only ensures safety and stability but also optimizes selectivity. For instance, some reactions yield more desired products at specific temperatures; thus, maintaining optimal heat exchange directly affects yield and process economics.

In modern chemical engineering, computational tools and dynamic simulation are often used to model heat transfer and predict the reactor's response to thermal disturbances. These models help in designing energy-efficient systems, integrating heat recovery, and reducing environmental impact through improved thermal utilization.

Questions for self-control

- 1. What are the three primary mechanisms of heat transfer in reactors?
- 2. How do exothermic and endothermic reactions differ in their heat management needs?
- 3. What are the main methods used for temperature control in continuous reactors?
- 4. Why is heat transfer important for product selectivity in chemical reactions?
- 5. How can computational models help in optimizing reactor heat management?

Literature

- 1. Levenspiel, O. Chemical Reaction Engineering, 3rd ed., Wiley, 1999.
- 2. Fogler, H. S. *Elements of Chemical Reaction Engineering*, 5th ed., Prentice Hall, 2016.
- 3. Smith, J. M., Van Ness, H. C., Abbott, M. M. *Introduction to Chemical Engineering Thermodynamics*, 8th ed., McGraw-Hill, 2018.
- 4. Bird, R. B., Stewart, W. E., Lightfoot, E. N. *Transport Phenomena*, 2nd ed., Wiley, 2007.
- 5. Froment, G. F., Bischoff, K. B. *Chemical Reactor Analysis and Design*, 3rd ed., Wiley, 2010.